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SUMMARY

The Perceus algorithm, described in Reinking et al. [1], introduces a new approach for

achieving automated reference counting with impressive performance capabilities. How-

ever, a direct comparison of this algorithm to a garbage collector within the same system

has not been conducted, leading to an unresolved research question about whether Perceus

can compete with state-of-the-art garbage collectors. In this thesis, I take a step towards an-

swering this question by presenting an implementation of Perceus in OCaml, an industrial-

strength programming language with a heavily fine-tuned and performant garbage collec-

tor. The implementation, as evaluated against the benchmark suite used in the Perceus

paper, is competitive with the OCaml (version 4.14.0) garbage collector, motivating further

exploration of this topic.

xii



CHAPTER 1

INTRODUCTION

Reference counting is one of the simplest memory management schemes. In this scheme, a

reference count is maintained for each object (in the loose sense), freeing it as soon as the

count drops to zero. Several programming languages have employed reference counting

for automated memory management — Python, Swift, Perl, and PHP, to name a few. Other

languages (like C++ and Rust) support memory management through reference counting

using smart pointers.

There are several benefits to using reference counting over other memory management

schemes (like tracing garbage collection or manual management). For one, it is simple to

implement and has a lower memory overhead. Further, reference counting does not suffer

from “stop-the-world” pauses common in tracing garbage collectors as memory is managed

in an incremental fashion. Finally, the reference counts can be used to enable other runtime

optimizations like in-place updates and reuse.

However, there are some issues that make reference counting expensive in practice, es-

pecially in the automated setting. Maintaining reference counts can have non-trivial over-

head, sometimes even eclipsing the runtime of the program’s actual computation. This cost

magnifies in concurrent settings, because atomic instructions need to be used, which are

much more expensive than their regular counterparts. Reference counting systems are sus-

ceptible to cycles, which thereby cause memory leaks. Finally, reference counting systems

can be imprecise, holding on to memory for much longer than needed when compared to

manually managed memory. Owing to these issues, tracing collectors have become the

more popular choice for automated memory management.

In 2021, however, Reinking et al. [1] shed new light on the subject by presenting

Perceus: a garbage-free reference counting scheme with reuse. Unlike traditional reference
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counting techniques, Perceus emits precise reference counting instructions such that the

program is garbage free — memory is not held onto for any longer than needed. Perceus

enables further optimization passes like drop specialization and reuse specialization, which

enables a new programming paradigm called functional but in-place (FBIP). This paradigm

allows programmers to write in-place mutating algorithms in a functional way. While

Perceus does not address the performance and memory issues related to concurrency and

cycles (it does mitigate it to a large extent however), Perceus innovates in regards to perfor-

mance and memory usage of single-threaded cycle free programs. The authors show that

Perceus, as implemented in Koka ([2]) is competitive with state-of-the memory collectors

like that of OCaml, Haskell, Java, and Swift.

However, the paper compared the performance across different languages and systems

and did not directly compare Perceus against a garbage collector within the same system.

As such, it is an open research question if Perceus can actually be competitive with a state-

of-the-art garbage collector.

In this thesis, I take a step towards answering this question by presenting an imple-

mentation of Perceus in OCaml, a widely used programming language with a rich research

background and excellent performance characteristics. We can now directly compare the

new Perceus reference counting background to the regular backend, which uses a finely

tuned multi-generational garbage collector. The implementation, as evaluated against the

benchmark suite used in the Perceus paper, is competitive with the OCaml garbage collec-

tor. This result is fascinating: with just a few months of implementation work, Perceus is

able to achieve similar performance (over our memory intensive but still limited benchmark

suite) as the finely turned OCaml (version 4.14.0) garbage collector.

1.1 Contributions

I offer the following contributions:

• Chapter 2 provides a short tour of OCaml, covering only concepts relevant to under-

2



standing our implementation of Perceus

• The OCaml compiler has been under development for over 25 years. As such, it

can be daunting to understand its inner workings. Chapter 3 provides an overview

of the OCaml native code compiler (as of version 4.14.0), extrapolating particularly

on object representation, the middle end, and the x86 code generator. My hope is

that this chapter will provide readers with the background needed to understand and

appreciate our design decisions.

• Chapter 4 goes over memory management techniques, culminating with an exposi-

tion of Perceus

• Chapter 5 talks about the implementation, focusing on modifications made to the

compiler and the impact of various design decisions.

• Chapter 6 presents an evaluation of the implementation. Notably, it shows that

Perceus is competitive with OCaml on the selected benchmarks.

• Finally, I discuss the limitations of the implementation and directions for future work

in Chapter 7

1.2 Broader Impact

This work takes a major step towards demonstrating the competitiveness of Perceus in

an industrial-strength setting. The results demonstrate that reference counting, contrary

to popular belief, can be a performant memory management technique. The hope is that

these preliminary results can incentivize further research into reference counting, including

but not limited to addressing the issues with Perceus with regards to reference cycles and

concurrency.

3



CHAPTER 2

A TOUR OF OCAML

This chapter provides an overview of basic OCaml constructs relevant to understanding the

rest of the thesis. It is geared towards readers unfamiliar with the language.

2.1 Basic expressions

Expressions are the basic unit of computation. OCaml has a number of built-in primitives

for creating expressions.

Here is an expression on integers:

1 3 + 4 * 7 ;;

And here is an expression on floats:

1 (2.0 *. 3.14) +. 5.0 ;;

Two things to note:

• OCaml is strictly typed and will not accept ill-typed programs. For example, the

expression 3 + 4.0;; will be rejected by the compiler because + operates on in-

tegers (and 4.0 is a float).

• The double semi-colon (;;) is a directive that tells the compiler to evaluate every-

thing leading up to it.

OCaml supports conditional expressions using if ... then ... else.

1 let x = true in

2 if x then

3 1 + 1

4 else

4



5 2 + 2

6 ;;

2.2 Let expressions

You can name expressions by using a let binding.

1 let x = 3 + 4 * 7 in x ;;

In this example, the name of the bound expression is called a variable. Variables in

OCaml are not mutable storage locations and should not be conflated with those available

in imperative programming languages like C or Python. They are simply constructs for

naming sub-expressions.

Let bindings can be nested.

1 let x = 3 + 4 * 7 in

2 let y = 2 + 5 in

3 x + y ;;

2.3 Functions

The let keyword can also be used for defining functions.

1 let double x = x * 2

2 let volume_of_cylinder r h = 2 *. 3.14 *. r *. h ;;

Recursive functions must be marked as such using the rec keyword.

1 let rec fibonacci n =

2 if n <= 0 then

3 0

4 else

5 fibonacci (n-1) + fibonacci (n-2)

5



6 ;;

You can define mutually recursive functions using the and keyword.

1 let rec even n =

2 if n = 0 then true

3 else odd (n - 1)

4 and odd n =

5 if n = 0 then true

6 else even (n - 1)

7 ;;

OCaml also has support for anonymous (i.e. unnamed) functions (thereby making func-

tions first-class).

1 (function x -> x + 1) ;;

2.4 Types

2.4.1 Type inference

Notice that despite OCaml being strictly typed, we did not have to specify types in any of

the example programs. This feature is known as type inference.

Type inference is not perfect and can fail at times. In such cases, the programmer can

explicitly specify types.

2.4.2 Built-in data types

In addition to integers, floats, and booleans, OCaml provides built-in support for creating

tuples, strings, lists, arrays, and optionals.

1 let _x0 = (1, 2, 3) in (* Tuples *)

2 let _x1 = "hello, world" in (* Strings *)

3 let _x2 = [1 ; 2 ; 3 ; 4 ] in (* Lists *)

6



4 let _x3 = [| 1 ; 2 ; 3 ; 4 |] in (* Arrays *)

5 let _x4 = Some 4 in (* Optionals *)

6 let _x5 = None in

7 () ;;

2.4.3 User defined types

Users can define their own types. OCaml provides three main constructs for doing so: type

aliasing, type constructors, and records.

You can give an alternative name to an existing type using a type alias.

1 type my_int = int

2 type my_int_list = int list ;;

Multiple types can be grouped together using variants. A variant type defines a set of

constructors for initializing an object of that type. As an example, I can define an integer

cons-list as follows:

1 type int_cons_list =

2 | Cons of int * int_cons_list

3 | Nil

4 let _x = Cons 1 (Cons 2 (Cons 3 Nil)) in () ;;

You can also group types using records.

1 type my_user = {

2 name: string ;

3 age: int ;

4 height: float ;

5 }

6 let _x = { user= "Foo" ; age= 42 ; height= 3.14 } in () ;;

7



2.5 Polymorphism

Our cons-list definition in the previous section was specialized to integers. However, can

make generalize the definition using polymorphic types.

1 type cons_list 'a =

2 | Cons of 'a * cons_list

3 | Nil

4 let _int_list = Cons 1 (Cons 2 (Cons 3 Nil)) in

5 let _string_list = Cons "a" (Cons "b" (Cons "c" Nil)) in () ;;

This form of polymorphism is known in the literature as parametric polymorphism. Rest

assured this is not the only form of polymorphism available in OCaml — I omit further

discussion for brevity.

2.6 Pattern matching

Like most other functional programming languages, OCaml also supports pattern match-

ing. This allows programmers to destruct objects of a given type into its constituent parts

based on its shape.

1 let rec my_map f xs =

2 match xs with

3 | Cons (x, rest) -> Cons (f x, map f rest)

4 | Nil -> Nil

5 let rec map f xs =

6 match xs with

7 | [x ; rest] -> (f x) :: (map f rest)

8 | [] -> []

9 ;;

8



2.7 Imperative constructs

Despite being a functional programming language, OCaml offers several facilities for writ-

ing imperative programs.

You can create a mutable value using a ref.

1 let x = ref 0 in (* Creation *)

2 x := 2 ; (* Mutation *)

3 !x ;; (* Access *)

Note how the imperative update (x := 2) was sequenced with an another expression

using a semi-colon (;).

The fields of a record can also be defined to be mutable.

1 type my_mutable_user = {

2 name: string ;

3 mutable age: int ;

4 mutable height: float ;

5 }

6 let x = { name= "Bar"; age= 42; height= 3.14 } in

7 x.age <- 44 ;

8 x.height <- 6.28 ;;

Finally, OCaml also has built-in (albeit rather limited) support for while-loops and

for-loops.

1 let x = [| 0 ; 0 ; 0 ; 0 ; 0 |] in

2 let num_elements = Array.length x in

3

4 let i = ref 0 in

5 while !i < num_elements do

6 x.(!i) <- !i (* Array elements are mutable too! *)

7 done ;

8

9



9 for j = 0 to num_elements - 1 do

10 x.(j) <- j

11 done ;;

2.8 Exceptions

OCaml has built-in support for exceptions. Certain design decisions in the compiler (namely

the ABI) are made to make exceptions fast and cheap (Section 3.2.3).

1 (* Defining a custom exception *)

2 exception MyBad of string

3

4 (* Raising an exception *)

5 let will_raise_my_bad () =

6 raise (MyBad "oops")

7

8 (* Handling exceptions *)

9 let () =

10 try will_raise_my_bad () with

11 MyBad s -> print_string s

2.9 Modules

One of the distinguishing features of OCaml is the module system. Modules are an abstrac-

tion for packaging code and defining interfaces.

By default, all code within a file lives inside a module of the same name as the file. For

example, suppose we put the following code in foo.ml:

1 let my_foo a b = a + b

Then, you can use my_foo in a separate file bar.ml as follows:

10



1 let my_bar = Foo.my_foo 5 10

Modules can be opened, which will make all the names in that module available in the

current scope.

1 open Foo

2

3 (* Do not need to qualify `my_foo` *)

4 let my_bar = my_foo 5 10

Modules can be nested. You can, for example, define another module inside a file-based

module as follows:

1 module NestedFoo = struct

2 let my_nested_foo a b = a + b

3 end

4

5 let my_foo = NestedFoo.my_nested_foo 5 10

Programmers can control the interface exposed by a module using a signature. The

interface contains information on the symbols exposed by the module and their types. For

file-based modules, the signature is specified using an interface file, having the mli file

extension. For example, we can define a signature for foo.ml in a foo.mli file as

follows:

1 val my_foo : int -> int -> int

Signatures can also be defined inside a file.

1 sig NestedFooIface = sig

2 val my_nested_foo : int -> int -> int

3 end

4

5 module NestedFoo : NestedFooIface = struct

6 let my_nested_foo a b = a + b

11



7 end

In addition to specifying interfaces, signatures can also be used to define abstract types.

These are used to hide the underlying implementation details of a module, which can be

very useful in controlling how a module can be used.

1 module type AbstractStackIface = sig

2 type 'a t

3

4 val init : unit -> 'a t

5 val push : 'a t -> 'a -> 'a t

6 val pop : 'a t -> ('a option * 'a t)

7 end

8

9 module AbstractStack : AbstractStackIface = struct

10 type 'a t = 'a list

11

12 let init () = []

13

14 let push xs x = x :: xs

15

16 let pop xs =

17 match xs with

18 | [] -> (None, [])

19 | x :: rest -> (Some x, rest)

20 end

In the above snippet, we are defining an AbstractStack module that hides the

fact that the stack is implemented using a list by abstracting away the 'a t type in the

AbstractStackIface signature.

12



2.10 Further Reading

This chapter provided a high-level overview of some of the prominent features of OCaml.

For readers interested in learning more, I recommend taking a look at the OCaml man-

ual ([3]) which contains information on all you would ever need to know about the language

presented in an accessible way.
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CHAPTER 3

THE OCAML COMPILER

The OCaml compiler has a long history, tracing back to its origins in the ZINC compiler

[4]. In this thesis, I will be exclusively discussing version 4.14.0 of the compiler. Note that

this version does not include the (recently upstreamed) multi-core version of OCaml [5].

The compiler is open-source and is readily available at https://github.com/ocaml/ocaml,

along with the OCaml runtime system. The codebase consists of approximately 388k lines

of code.

The compiler has two variants — bytecode and native. The bytecode compiler produces

compact, portable code that can be interpreted by the runtime system. It is fast but not as

performant as the native compiler, which generates high-performance machine code that

can be directly run on the target system. It supports several platforms, including x86 (32

and 64 bit), ARM (32 and 64 bit), Power (32 and 64 bit), RISC-V (64 bit), and IBM Z

(s390x).

Source ParseTree TypedTree Front-end

Lambda Clambda/Flambda Middle-end

Cmm Mach Assembly Back-end

Figure 3.1: OCaml Compilation Pipeline
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1 let rec map f xs =
2 match xs with
3 | [] -> []
4 | x :: rest -> (f x) :: (map f rest)
5 ;;

(a) OCaml

1 (setglobal Map!
2 (letrec
3 (map/267
4 (function f/268 xs/269
5 (if xs/269
6 (makeblock 0 (apply f/268 (field 0 xs/269))
7 (apply map/267 f/268 (field 1 xs/269)))
8 0)))
9 (makeblock 0 map/267)))

(b) Lambda

Figure 3.2: OCaml code for the map function over lists, represented in Lambda form

3.1 Compilation Pipeline

Fig. 3.1 summarizes the OCaml compilation pipeline. Compilation starts with parsing,

which converts OCaml source code into ParseTree, which is an untyped abstract syntax

tree (AST) contained detailed information about the structure of the program. Lexing is

done using the ocamllex lexer generator [3] and parsing is done using the menhir parser

generator [6].

The ParseTree AST is then fed into the typechecker which runs type inference and

checks the program for typing errors. If it succeeds, it outputs a typed AST called Type-

dTree. For a detailed treatment of OCaml’s type checker, refer to Rémy [7], Wright and

Felleisen [8], and Kiselyov [9].

After type checking, TypedTree is lowered into a smaller, untyped calculus called

Lambda (Fig. 3.2). The lowering gets rid of type annotations, replacing some of them

with value kinds, which encode information about the memory representation of a value

(generic, int, boxed int, or float). Further, high-level constructs like modules and classes
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1 let x = Random.int 10 in
2 let f y = x + y in
3 f 5

(a)

1 let x = Random.int 10 in
2 let f y env =
3 (field env 0) + y
4 in
5 f 5 (env with { 0 => x })

(b)

Figure 3.3: Implicit closures. In this example, the binding x is implicitly captured by the
closure f. To make this capture explicit, the compiler will add an extra env parameter.
The closure can then using this parameter to access the captured value of x.

1 (* Direct call *)
2 let f x = x + 1 ;;
3 f 13 ;;
4

5 (* Generic call *)
6 (let y = 2 in
7 (fun x -> x + y)) 13 ;;

Figure 3.4: Implicit function calls. In this example, the first function call is a direct call,
using an explicit label to indicate the function being invoked. On the other hand, the second
function call is a generic call, using a generic expression that returns a lambda, in-place of
a function label.

get compiled down to records and function pointers. Pattern matching is also compiled

away to optimized Lambda code using a technique presented by Le Fessant and Maranget

[10]. The compiler runs two optimization passes on Lambda: tail-modulo cons (TMC)

[11] and Simplif. TMC aids in optimizing away tail calls while Simplif tries to simplify

expressions by getting rid of unnecessary let-bindings through inlining.

Lambda form, however, is not amenable to code generation. First, closures are still

implicit (Fig. 3.3a). Machine code has no notion of capturing variables, let alone closures.

The compiler will have to generate code to invoke the closure in the correct environment

(Fig. 3.3b). Second, function calls are not explicit (Fig. 3.4). By classifying function calls,

the compiler can make better optimization decisions. For example, it can decide to inline a

generic call if it is small enough.

The middle-end serves as an intermediary prior to handing control over to the back-
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end for machine code generation. OCaml has two middle ends to choose from. The de-

fault is Clambda, which performs closure conversion and makes function calls explicit.

Closure conversion makes variable capture explicit by passing an extra environment argu-

ment which closures can use to refer to captured variables. The alternative middle-end is

Flambda, which in addition will perform several optimizations like more aggressive inlin-

ing, function specialization, unboxing, and code lifting. A discussion of these optimizations

is beyond the scope of this thesis. The interested reader should refer to the manual [3] for

more details.

Now, the backend is invoked. OCaml’s backend consists of two main IRs: Cmm (not

to be confused with C−− [12]) and Mach. Cmm is a machine-independent IR that bears

a striking resemblance to Lambda/Clambda, although it differs in that primitives and func-

tion applications are broken down into fine-grained operations. When converting to Cmm,

value kind information is propagated, which serves two purposes: (1) guiding the register

allocator (for example, integer values go into integer registers), and (2) aiding the GC in

local variable tracking (for example, unboxed values can be ignored). Instruction selection

is then performed to generate Mach, a machine-specific IR. The compiler applies standard

optimization passes like common sub-expression elimination (CSE), and dead code elimi-

nation (DCE), along with a CombAlloc pass, which coalesces allocation requests. Lastly,

register allocation and instruction scheduling are executed, followed by linking the result-

ing binary with the runtime system.

3.2 The Runtime System

OCaml’s runtime system is written in C and consists of about 29k lines of code. It im-

plements primitives, the garbage collector, and a bytecode interpreter. It also specifies the

memory representation of OCaml values. Since OCaml programs follow a different appli-

cation binary interface (ABI) compared to C, using runtime routines requires the program

to switch to and from C.
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Field 0 Field nHeader

Integer Pointer

1 0

Figure 3.5: Representation of integers and pointers

tagcolorwosize
07891031/63

Figure 3.6: Representation of the 32/64-bit header

3.2.1 Memory representation of Values

Values in OCaml are denoted using tagged pointers, where the least significant bit is utilized

to differentiate between pointers and integers. When the least significant bit is set to one,

the value is an integer; otherwise, it is a pointer. Pointers point to a block which includes

a header and its corresponding fields (Fig. 3.5). The header (Fig. 3.6) is made up of three

parts:

• wosize: The number of words in a block (excluding the header)

• color: Used by the garbage collector during the mark-sweep phase

• tag: Used to determine the type of the block

For example, floats are represented as boxed values containing a single field (Fig. 3.7).

Value Representation

3.14 tag=253 3.14
header field

IEEE 754

Figure 3.7: Memory representation of floats
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Value Representation

type 'a cons_list =
| Nil
| Cons of 'a * cons_list

0

integer

Type definition

Nil

Value Representation

tag=0 1
header field

Cons 1 (Cons 2 Nil)

tag=0 2
header field

0

integer

integer integer

pointer

Figure 3.8: Memory representation of variants

Variants, on the other hand, have a different encoding (Fig. 3.8). Variants with no pa-

rameters are encoded as unboxed integers, starting from zero. Those that have parameters,

however, are encoded as boxed values with tags starting from zero. Lists are a special case

of variants: the empty list is represented as the integer zero, while non-empty lists are rep-

resented as a boxed value with two fields. The first field contains the value of the list’s

head, and the second field points to the rest of the list.

The runtime utilizes various techniques to efficiently encode specific types of values.

Two examples of such values are float arrays and closures.

Generally, an array is encoded as a boxed value with the fields representing the elements

of the array. Note that floats are boxed which means that accessing the elements of a float

array require two levels of indirection: one to access the address of the element, and another

to access the float value of the element. To make using float arrays more efficient, the

runtime gets rid of the second indirection by packing the float values in the fields, i.e., by
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Value Representation

[| 1.0; 2.0; 3.0 |] tag=253 1.0
header field

IEEE 754

2.0
field

IEEE 754

3.0
field

IEEE 754

Figure 3.9: Memory representation of float arrays. Note how the elements are packed
instead of pointing to separate float blocks.

storing them as unboxed floats Fig. 3.9.

Closures in OCaml can be mutually recursive. To save space, OCaml will encode a

set of mutually recursive closures in a single block with a common shared environment

(Fig. 3.10) [13]. The general layout consists of a header followed by an encoding of the

closures (each separated by an infix header) followed by an encoding of the environment.

The individual closures themselves can have two separate encodings depending on their

arity. If the function arity is one, the encoding consists of a header, followed by a pointer

to the code for the closure, followed by an integer field encoding the arity and the offset to

the start of the environment (Fig. 3.11a). Otherwise, the encoding also contains a pointer

to a curried version of the closure (Fig. 3.11b).

3.2.2 Garbage Collection

OCaml uses a generational GC (which is a type of tracing GC) that manages two heaps:

minor and major. The design is based on the principle that most objects are small and short-

lived. Further, the GC is synchronous and can get invoked only during allocation requests

or polling sites (both of which are statically inserted by the compiler).

The minor heap is small, about 256K words by default. New objects are allocated

in the minor heap using a bump allocator. Allocations in the minor heap are cheap (for

example, the x86 runtime uses about four assembly instructions on average for a minor heap

allocation). When the minor heap is full, a copying collector will promote live objects to

the major heap. It works by first promoting all the roots followed by transitively promoting
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tag=Closure_tag

Closure 0

tag=Infix_tag

Closure 1

tag=Infix_tag

Closure (n-1)

Env value 0

Env value 1

Env value (m-1)

main header

infix header

closure
encoding

start of the
environment

Figure 3.10: Memory representation of a set of n mutually recursive closures collectively
capturing m variables in the environment

header

function pointer

closure info
(arity, startenv)

(a) Arity = 1

header

function pointer

closure info
(arity, startenv)

curried function
pointer

(b) Arity > 1

Figure 3.11: Memory representation of an individual closure
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their children. What remains in the minor heap is reused for further allocation. Since

objects are small and short-lived, the copying collector does not take much time to run and

thereby minimizes pause times.

The major heap is larger, containing promoted objects as well as objects that could not

fit in the minor heap. It uses a sophisticated allocation mechanism, using a software man-

aged paging system backed by libc’s malloc and free routines. When the major heap is

full, collection is carried out using an incremental mark-and-sweep approach. Objects can

be marked with four possible colors, encoded as part of the object header:

• black: Indicates that the object is live and must not be freed

• white: Indicates that the object is dead (i.e., there are no references to it) and can be

freed

• grey: Indicates objects that are alive but their children have not been scanned com-

pletely

• blue: Indicates that the block is free memory not encoding an object and can be used

for future allocations

The marking phase maintains a stack of objects to be traversed. It starts by first marking

the roots grey and pushing them onto the stack. Then, marking is continued by popping the

stack, marking the children of the popped object, and then marking the object itself black.

This process continues until the mark stack becomes empty.

The sweeping phase traverses the heap and turns white objects blue (indicating that they

are available for allocation) and black objects white (to reset before a future scan).

Both the phases are carried out in an incremental fashion, interleaved with the user

program. As a result, the collector must also be aware of new allocations and mutation.

If a new allocation happens during the marking phase, it is colored black. If it happens

during the sweeping phase, the is colored black or white depending on whether sweeping
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has reached the new allocation. Mutation is handled by invoking a write barrier that loads

the mutated object and marks it grey if it is white, adding it to the mark stack if needed.

3.2.3 Calling into the runtime: x86 edition

First, a discussion of OCaml’s ABI is in order. There are three calling conventions to be

aware of, summarized in Fig. 3.12:

• C calling convention: This is the standard cdecl calling convention, used by many

x86 C compilers. Certain registers are callee-saved.

• OCaml calling convention: In this convention, all registers are caller-saved. This is

makes exception handling extremely cheap. However, it is incompatible with the C

calling convention.

• Allocation calling convention: This convention is used by the allocation routines.

It does not require the caller to save any registers. In the fast case, only the bump

allocator is invoked, implemented with a single pointer bump followed by a check to

trigger the garbage collector if needed.

In addition to this, OCaml also pins the r14 and r15 registers to point to the exception

and bump allocator pointers respectively.

OCaml programs call into the C runtime by performing a runtime switch. Due to the

incompatibility in calling conventions, the runtime switch will need to save and restore a

slew of registers, making the whole process quite expensive Fig. 3.13 shows the assembly

that is run to invoke the garbage collector, which is implemented in the C runtime.

While the details mentioned here are specific to x86, the knowledge is easily portable

to make sense of how it is done for the remaining backends.
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C

Arguments:
integer: rdi, rsi, rdx, rcx, r8, r9
float: xmm0 – xmm7

Results:
integer: rax, rdx float: xmm0, xmm1

Notes:
Same as the cdecl convention used in C compilers. Registers rbx, rbp, r12-r15 are
callee-saved.

OCaml

Arguments:
integer: rax - r13
float: xmm0 – xmm9

Results:
integer: rax
float: xmm0

Notes:
All registers are caller-saved, with registers r14 and r15 pinned to global values.

Allocation

Arguments:
Same as OCaml

Results:
Same as OCaml

Notes:
Used for allocation in the minor heap, and in the worst-case can invoke the GC.

Figure 3.12: OCaml ABI summary
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1 pushq %r11; CFI_ADJUST (8);

2 pushq %r10; CFI_ADJUST (8);

3 pushq %r13; CFI_ADJUST (8);

4 pushq %r12; CFI_ADJUST (8);

5 pushq %r9; CFI_ADJUST (8);

6 pushq %r8; CFI_ADJUST (8);

7 pushq %rcx; CFI_ADJUST (8);

8 pushq %rdx; CFI_ADJUST (8);

9 pushq %rsi; CFI_ADJUST (8);

10 pushq %rdi; CFI_ADJUST (8);

11 pushq %rbx; CFI_ADJUST (8);

12 pushq %rax; CFI_ADJUST (8);

13 movq %rsp, Caml_state(gc_regs)

14 /* Save young_ptr */

15 movq %r15, Caml_state(young_ptr)

16 /* Save floating-point registers */

17 subq $(16*8), %rsp; CFI_ADJUST (16*8);

18 movsd %xmm0, 0*8(%rsp)

19 movsd %xmm1, 1*8(%rsp)

20 movsd %xmm2, 2*8(%rsp)

21 movsd %xmm3, 3*8(%rsp)

22 movsd %xmm4, 4*8(%rsp)

23 movsd %xmm5, 5*8(%rsp)

24 movsd %xmm6, 6*8(%rsp)

25 movsd %xmm7, 7*8(%rsp)

26 movsd %xmm8, 8*8(%rsp)

27 movsd %xmm9, 9*8(%rsp)

28 movsd %xmm10, 10*8(%rsp)

29 movsd %xmm11, 11*8(%rsp)

30 movsd %xmm12, 12*8(%rsp)

31 movsd %xmm13, 13*8(%rsp)

32 movsd %xmm14, 14*8(%rsp)

33 movsd %xmm15, 15*8(%rsp)

34 /* Call the garbage collector */

35 PREPARE_FOR_C_CALL

36 call GCALL(caml_garbage_collection)

37

(a) Setup and invocation

1 CLEANUP_AFTER_C_CALL

2 /* Restore young_ptr */

3 /* movq Caml_state(young_ptr), %r15 */

4 /* Restore all regs used by the code generator */

5 movsd 0*8(%rsp), %xmm0

6 movsd 1*8(%rsp), %xmm1

7 movsd 2*8(%rsp), %xmm2

8 movsd 3*8(%rsp), %xmm3

9 movsd 4*8(%rsp), %xmm4

10 movsd 5*8(%rsp), %xmm5

11 movsd 6*8(%rsp), %xmm6

12 movsd 7*8(%rsp), %xmm7

13 movsd 8*8(%rsp), %xmm8

14 movsd 9*8(%rsp), %xmm9

15 movsd 10*8(%rsp), %xmm10

16 movsd 11*8(%rsp), %xmm11

17 movsd 12*8(%rsp), %xmm12

18 movsd 13*8(%rsp), %xmm13

19 movsd 14*8(%rsp), %xmm14

20 movsd 15*8(%rsp), %xmm15

21 addq $(16*8), %rsp; CFI_ADJUST(-16*8)

22 popq %rax; CFI_ADJUST(-8)

23 popq %rbx; CFI_ADJUST(-8)

24 popq %rdi; CFI_ADJUST(-8)

25 popq %rsi; CFI_ADJUST(-8)

26 popq %rdx; CFI_ADJUST(-8)

27 popq %rcx; CFI_ADJUST(-8)

28 popq %r8; CFI_ADJUST(-8)

29 popq %r9; CFI_ADJUST(-8)

30 popq %r12; CFI_ADJUST(-8)

31 popq %r13; CFI_ADJUST(-8)

32 popq %r10; CFI_ADJUST(-8)

33 popq %r11; CFI_ADJUST(-8)

34

(b) Cleanup

Figure 3.13: Invoking the GC by switching into the C runtime. Some portions have been
omitted for brevity. Note the number of registers that have to be save/restored.
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CHAPTER 4

PERCEUS: GARBAGE FREE REFERENCE COUNTING WITH REUSE

Managing memory is a resource allocation problem, as a computer has a limited amount

of memory that needs to be shared among programs with varying memory needs. Memory

management occurs at different levels of the computing stack, including at the hardware,

operating system, or application levels. In this chapter, we will focus on the memory

management abstractions provided by programming languages.

Programming languages offer different facilities for managing memory within the ad-

dress space defined by the operating system. These can be broadly classified as manual or

automated. In manual memory management, the programmer has complete control over

a pool of memory and must explicitly specify when the system can reclaim memory. In

contrast, automated techniques shift this responsibility onto runtimes, which abstract away

memory management by automatically inferring when and where objects should be allo-

cated or deallocated.

4.1 Manual memory management

This memory management technique is commonly used in systems programming lan-

guages that prioritize granting the programmer greater control to build high-performance

systems. Here, the programming language provides interfaces for allocating and deallocat-

ing memory, which the program must explicitly invoke to meet memory requests. These

interfaces offer precise control over memory usage by abstracting over the operating sys-

tem’s system calls (such as sbrk and mmap), which manage memory in larger, page-sized

chunks. For instance, the malloc function in libc employs a free list to handle application

memory requests using memory obtained from the operating system.

Manual memory management has several advantages. It enables programmers to write
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1 int main() {
2 int abort = 0;
3 void *x = malloc(0x1000);
4 int err = process(x);
5 if (err) {
6 abort = 1;
7

8 // x is freed and abort
is set to 1

9 free(x);
10 }
11 ...
12 if (abort) {
13 // x is used after being

freed!
14 printf("Error: %p", x);
15 }
16 }

(a) Use after free

1 int main() {
2 void *x = malloc(0x1000);
3 int err = process(x);
4 if (err) {
5 // x is first freed here
6 free(x);
7 goto fail
8 }
9 ...

10

11 fail:
12 // x is freed again!
13 free(x);
14 }

(b) Double free

Figure 4.1: Manual memory management bugs. While the examples seen innocuous, they
are exploitable vulnerabilities.

high-performance code by eschewing the runtime overhead of using automated techniques

like tracing or reference counting. This, in turn, allows the programmer to give better

guarantees on properties like latency and resource usage, which are especially important

in time-critical, resource-constrained systems. By ceding control to the programmer, users

have the flexibility of deploying customized memory management schemes that are opti-

mized for their particular workloads.

However, the pastures are not all green in the land of manual memory management. It is

more likely that users misuse the control afforded by the technique, which result in wasteful

memory use and unexpected performance hits. The two most common bugs in this sphere

are use after free (Fig. 4.1a) and double free (Fig. 4.1b). Modern systems programming lan-

guages address this issue by enforcing a paradigm that makes such bugs harder to manifest

in common usage. An example of such a paradigm is Resource Allocation is Initializa-

tion (RAII), popularized by C++. Note that these paradigms do not preclude fine-grained

control — the programmer can opt out of using the paradigm.
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1 int main() {
2 void *x = malloc(0x1000);
3 init(x);
4 process(x);
5 print(x);
6

7 // x can be freed here
8

9 void *y = malloc(0x1000);
10 init(y);
11 process(y);
12 print(y);
13

14 // However, it is freed much later
15 free(x);
16 free(y);
17 }

Figure 4.2: Holding onto memory for longer than needed, a notable flaw of manual memory
management

Another issue, however, is that resources can be held for longer than needed Fig. 4.2.

In such cases, it would help to have a compiler pass analyze the lifetimes and emit pre-

cise allocation and deallocation requests, treading into the sphere of automated memory

management.

4.2 Automated memory management

Automated memory management encompasses techniques that abstract away the concerns

of memory management from the programmer, shifting the burden onto language runtimes.

Broadly, they can be classified into two categories: tracing and reference counting.

4.2.1 Tracing

In tracing based systems, a garbage collector (GC) traces the heap to determine which

objects are alive and therefore should not be deallocated It does this by first tracing the

roots, which are a list of objects known to be alive at the start of a collection, continuing

until it has traced all objects transitively referenced by the roots. There are many ways to
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implement tracing collectors.

The most naive way, as exemplified by the explanation prior, is referred to as mark-and-

sweep. Here, collection is split into two phases: marking and sweeping. During the mark

phase, the collector will trace the heap, marking live objects as alive. During the sweep

phase, the collector will deallocate all dead objects. While simple to implement, the main

disadvantage is that it pauses the program execution during collection (colloquially referred

to as stopping the world), which can result in unexpected freezes in program execution,

thereby making it unsuitable for time-critical systems.

To address the pauses, mark-and-sweep is augmented with a tri-color abstraction in

which objects are marked dead (typically colored white), alive with no outgoing references

to traverse (typically colored black), and alive with outgoing references that have not been

traversed (typically colored grey). By using three colors, the marking and sweeping phases

can now be performed incrementally, thereby mitigating unpredictable pause times. This

should remind you of our discussion on OCaml’s GC, which in fact uses the tri-color ab-

straction.

Apart from pauses, a tracing GC may also have to deal with fragmentation. There are

two choices here:

• Leave all live objects as is. Such a collector is referred to as a non-moving (or non-

compacting) collector.

• Move live objects to a new area of memory. Such a collector is referred to as a

moving (or compacting) collector.

The main benefit of a non-moving collector is that the overhead of a collection is low-

ered. However, moving collectors can improve overall program performance by reducing

allocation/deallocation time and improving spatio-temporal locality of objects.

It has been empirically observed in programs that the most recently allocated objects are

the most likely to be unreachable quickly. This motivates the idea of splitting the heap into
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generations ranging from youngest to oldest, promoting objects that survive a collection to

the older generation. Such collectors are referred to as generational or ephemeral collectors.

In practice, they can result in faster, incremental collection cycles.

Tracing collectors can also execute in multi-threaded environments. In such cases,

careful attention needs to be paid to how the different phases can execute concurrently with

the user program.

4.2.2 Reference counting

Reference counting is a simple memory management technique in which an object is freed

as soon as its reference count drops to zero. It can either be implemented manually (where

the programmer explicitly manages reference counts) or automatically (where a a compiler

or interpreter manages the reference counts on behalf of the programmer).

One of the main advantages of reference counting over tracing is that it is relatively

simple to implement. Further, it can lead to better memory utilization because objects

are freed as soon as they are no longer referenced. The cost of tracing is linear in live

data, while the cost of reference counting is linear in the number of reference counting

operations. This means that the performance of reference counting does not deteriorate as

the number of live objects increases. Reference counting does not cause stop-the-world

pauses due to its incremental nature. The reference counts themselves can serve as useful

data for performing certain runtime optimizations. For instance, if it is known that an object

is unique (i.e., its reference count is one), then the compiler can perform in-place updates

on the object. This is an especially important optimization in functional programming

languages where objects are immutable by default. Another optimization that is enabled

by reference counting is reuse. Here, the system tries to reuse the memory from a prior

deallocation instead of returning back to the free pool, making allocation in this case free.

We talk more about reuse in Section 4.3.

However, there are certain problems that make reference counting expensive in practice:

30



• Frequency of updates: Maintaining reference counts is not free. In a naive imple-

mentation, it is possible that the program will have to perform a large number of

these updates. Tracing collectors, in practice, have a lower amortized cost as they are

typically run infrequently.

• Cycles: A more insidious issue has to do with reference cycles — two or more objects

refer to each other in a cyclic fashion, which results in neither of their reference

counts to drop to zero. This can particularly arise in cyclic data structures. This

issue is typically addressed by using weak reference counts or resorting to a tracing

collector.

• Concurrency: In the presence of shared data structures, the reference count opera-

tions need to be atomic, which incurs additional costs.

• Precision: Reference counting systems may even be imprecise, holding on to objects

for longer than necessary. This can happen when reference counting operations are

performed at the end of lexical scopes (usually done to make exception handling and

stack unwinding simpler), as shown in Fig. 4.2.

4.3 Perceus

In 2021, Reinking et al. [1] presented their work on Perceus, a reference counting scheme

with excellent performance characteristics (Section 4.3) compared to mature memory col-

lectors like that of Haskell, OCaml, and Swift. Common reference counting implemen-

tations, as exemplified in the previous section, might retain memory longer than needed.

Perceus does away with this issue by emitting precise reference counting operations, free-

ing an object as soon as no more references remain. This, in turn, makes cycle-free pro-

grams garbage free, where only live references are retained at any point in the program.

As an example, consider:

1 let foo () =
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Figure 4.3: Relative execution time and peak working set with of Perceus as implemented
in Koka [1].
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2 let xs = range 0 100 in (* Create a list *)

3 let ys = map f xs in (* Map a function `f` over it *)

4 print ys

A traditional reference counting system that tracks liveness based on lexical scope

would emit the following:

1 let foo () =

2 let xs = range 0 100 in (* Create a list *)

3 let ys = map f xs in (* Map a function `f` over it *)

4 print ys ;

5 drop xs ;

6 drop ys

Note how the memory held by xs is still live during the execution of print even

though it is not referenced at or after this point.

In Perceus, no drop instructions will be emitted in foo. Instead, ownership of the

references to xs and ys is passed down into map and print respectively, which are now

responsible for emitting the drops. At first glance, this approach may seem expensive.

However, Perceus enables further optimization opportunities, like drop specialization and

reuse specialization. Additionally, Perceus enables a novel programming paradigm called

functional but in-place (FBIP), which lets programmers write in-place mutating algorithms

in a functional way.

Let us examine these optimizations by considering the map function (Fig. 4.4a). After

running Perceus, map will emit drop instructions for xs and f since it takes ownership

of its arguments (Fig. 4.4b). Drop specialization (Fig. 4.4c) inlines the definition of drop

(Fig. 4.6), which when coupled with fusion results in almost no reference counting opera-

tions in the fast path (Fig. 4.4d). Reuse analysis builds upon drop specialization by tracking

which freed memory regions can be reused by future allocations. It does this by first pro-

ducing reuse tokens using the drop-reuse primitive (Fig. 4.7), each of which is linked to
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1 type 'a list =
2 | Nil
3 | Cons of 'a * 'a list
4
5 let rec map f xs =
6 match xs with
7 | Nil -> Nil
8 | Cons (x, rest) -> Cons (f x, map f rest)

(a) The map function

1 let rec map f xs =
2 match xs with
3 | Nil -> ( drop xs ; drop f ; Nil )
4 | Cons (x, rest) -> (
5 dup x ;
6 dup rest ;
7 drop xs ;
8 Cons ((dup f) x, map f rest)
9 )

(b) After inserting reference counting
instructions

1 let rec map f xs =
2 match xs with
3 | Nil -> ( drop xs ; drop f ; Nil )
4 | Cons (x, rest) -> (
5 dup x ;
6 dup rest ;
7 if is_unique xs then (
8 drop x ;
9 drop rest ;

10 free xs
11 ) else (
12 decref xs
13 ) ;
14 Cons ((dup f) x, map f rest)
15 )

(c) After drop specialization

1 let rec map f xs =
2 match xs with
3 | Nil -> ( drop xs ; drop f ; Nil )
4 | Cons (x, rest) -> (
5 if is_unique xs then (
6 free xs
7 ) else (
8 dup x ;
9 dup rest ;

10 decref xs
11 ) ;
12 Cons ((dup f) x, map f rest)
13 )

(d) After fusion

1 let rec map f xs =
2 match xs with
3 | Nil -> ( drop xs ; drop f ; Nil )
4 | Cons (x, rest) -> (
5 dup x ;
6 dup rest ;
7 let ru = drop_reuse xs in
8 Cons@ru ((dup f) x, map f rest)
9 )

(e) Reuse token insertion

1 let rec map f xs =
2 match xs with
3 | Nil -> ( drop xs ; drop f ; Nil )
4 | Cons (x, rest) -> (
5 dup x ;
6 dup rest ;
7 let ru =
8 if is_unique xs then (
9 drop x ;

10 drop rest ;
11 &xs
12 ) else (
13 decref xs ;
14 NULL
15 )
16 in
17 Cons@ru ((dup f) x, map f rest)
18 )

(f) Drop specialization for the
drop-reuse primitive

1 let rec map f xs =
2 match xs with
3 | Nil -> ( drop xs ; drop f ; Nil )
4 | Cons (x, rest) -> (
5 let ru =
6 if is_unique xs then (
7 &xs
8 ) else (
9 dup x ;

10 dup rest ;
11 decref xs ;
12 NULL
13 )
14 in
15 Cons@ru ((dup f) x, map f rest)
16 )

(g) After fusion

Figure 4.4: Perceus on map, including drop specialization and reuse analysis
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1 type t =
2 | Foo of int * int * t
3 | Bar of int
4 | Baz
5

6 let foo n =
7 match n with
8 | Foo (a, b, c) -> (
9 dup c ;

10 let ru = drop_reuse n in
11 Foo@ru (a + 1, b, c)
12 )
13 | _ -> n

(a) Original program, after reuse token insertion

1 if ru <> NULL then (
2 (* In-place, fast path *)
3 ru[0] := a + 1 ;
4 ru[1] := b ;
5 ru[2] := c ;
6 ru
7 ) else (
8 (* Fresh allocation *)
9 Foo (a + 1, b, c)

10 )

(b) Foo@ru expanded, before reuse
specialization

1 if ru <> NULL then (
2 (* In-place, fast path *)
3 ru[0] := a + 1;
4 ru
5 ) else (
6 (* Fresh allocation *)
7 Foo (a + 1, b, c)
8 )

(c) Foo@ru expanded, after reuse spe-
cialization

Figure 4.5: Reuse specialization in action. Note how after specialization, fields 1 and 2
of Foo are reused in the fast path, resulting in only one assignment (as opposed to three).
ru[i] refers to the ith field of a constructor represented by ru.

35



1 let drop x =
2 if is_unique x then (
3 drop children of x ;
4 free x
5 ) else (
6 decref x
7 )

Figure 4.6: Pseudocode for the drop primitive

1 let drop_reuse x =
2 if is_unique x then (
3 drop children of x ;
4 &x
5 ) else (
6 decref x ;
7 NULL
8 )

Figure 4.7: Pseudocode for the drop-reuse primitive

a compatible constructor that can reuse the allocation represented by the token if possible.

Now, in the fast path, the memory of xs can be reused (Fig. 4.4f and Fig. 4.4g), effec-

tively updating the list in-place. Reuse specialization leverages reuse analysis to further try

reusing the unchanged fields of a constructor. map does not benefit from this optimization

as all the fields are assigned. Instead, consider Fig. 4.5 in which all the fields of the Foo

constructor except the first one remain unchanged. Reuse specialization can identify this

and eliminate unnecessary assignments.

Table 4.1 summarizes all of the primitives used by Perceus. I refer readers to the Perceus

technical report ([14]) for more detailed information about the algorithm.
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Table 4.1: Reference counting primitives used by Perceus and its optimizations

Primitive Description

dup Increments the reference count of an object by one
drop Decrements the reference count of an object by one. If it drops

to zero, recursively drops all children of the object and frees its
memory

drop-reuse Same as drop, but returns a reuse token instead of freeing its
memory

decr Decrements the reference count of an object by one
is-unique Returns true if the reference count of an object is one

alloc Allocates a block of memory
free Frees a block of memory

Foo@ru Allocates a constructor Foo, reusing memory tagged with the
reused token ru when possible
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CHAPTER 5

IMPLEMENTATION

Perceus was implemented on version 4.14.0 of the OCaml compiler, in roughly 2.8k lines

of code 1. It currently supports only 64-bit x86 systems. We do not anticipate much engi-

neering effort being expended to support the other backends. The effort aimed to achieve

the following objectives:

• Competitive Performance: The project evaluated the practicality of using Perceus

as an alternative garbage collection technique in a production-grade compiler like

OCaml. Hence, performance was of utmost importance.

• Minimal code footprint: Given that OCaml is a large and complex codebase, a

smaller patch was preferred to facilitate easier upstreaming. Besides, this would

serve as an example of the simplicity of the algorithm, thereby promoting its adop-

tion in other runtime systems.

• Essence of Perceus: What makes the algorithm tick? What assumptions does it make

of the runtime? What properties are desirable for a highly-performant implementa-

tion? Answering these questions will provide valuable insight that can not only help

developers with adopting Perceus into their compiler stacks, but also better direct

future research.

The implementation proceeded in three phases:

• Primitives: Fast reference counting primitives are crucial for Perceus’s performance.

Retrofitting these primitives into a compiler stack optimized for different design

goals, such as a tracing GC and fast exceptions, presents unique challenges.
1Calculated using the output of git diff 4.14.0 HEAD -- ’:(exclude)my/*’ |

diffstat -Cm
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1 type list =
2 | Nil
3 | Cons of int * list
4

5 let rec map f xs =
6 match xs with
7 | Nil -> Nil
8 | Cons (x, rest) -> Cons (f x, map f rest)

Figure 5.1: Implementation of map for a custom list type. Used as a running example for
demonstrating code transformation à la Perceus.

• Algorithm: Perceus is specified on the λ1 resource calculus, which is less feature-rich

than any of the compiler’s IRs (TypedTree, Lambda, Clambda, etc.). As a result, we

must modify the core algorithm to suit this environment.

• Optimization: One of the primary advantages of utilizing Perceus is that it provides

additional opportunities for optimization, which can lead to significant improvements

in performance.

The following sections of this chapter delve into each stage in greater depth, outlining

critical design choices and codebase modifications. Note that whenever I use the word

“GC”, I am referring to OCaml’s current garbage collector (and not Perceus). I will be

using the map program defined in Fig. 5.1 as the running example when explaining the

different transformation passes.

5.1 Reference Counting Primitives

One of the main bottlenecks of reference counting is maintaining the reference counts

themselves. There are several techniques of alleviating this, one of which is making the

primitives highly-performant. OCaml was not designed with reference counting in mind,

and as a result certain tradeoffs had to be made.

Before discussing these tradeoffs, let us discuss how reference counts are maintained in

the Perceus incarnation. One naive approach would be to use a global dictionary mapping
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tagcolorwosize
07891063

ref count
3132

Figure 5.2: Modified block header encoding reference counts

allocated objects to their reference counts. However, it does not take much foresight to

see that there are at least two issues with this approach: (1) it would necessitate modifying

large parts of the runtime codebase, which is in violation of our goal of keeping a minimal

code footprint, and (2) most importantly, it is not cache-friendly which can result in poor

performance.

The approach taken in this work (as is common in other automated reference counting

systems) was to modify the block header to encode the reference counts. Fig. 5.2 sum-

marizes our changes. We reduce the number of bits taken up by the wosize field in half.

We anticipate that this should not cause any major issues (on 64-bit systems we would now

have 232 words available, which is plenty). Additionally, the color field is no longer neces-

sary since the GC is no longer used, although it is still part of the header at the moment.

The GC is disabled by modifying the code generation for the Ialloc and Ipoll ops

of Mach, which correspond to the GC invocation sites. Ialloc is compiled to invoke a

custom allocator (discussed below), while Ipoll emits no instructions. Further, we also

disable the CombAlloc pass to reduce the complexity of reference count maintenance.

Now we are ready to talk about implementing the primitives themselves. We modified

Cmm to also include operations for each primitive needed by Perceus. The operations

themselves get broken down to machine specific code during instruction selection. There

are several ways to do this.

One way would be to implement the primitives in C and emit code to call into the

C runtime. However, this approach is extremely wasteful. Because of the differences in

calling conventions, OCaml needs to save and restore a slew of registers when switching

between runtimes. Remember, reference counting primitives are invoked more often than

the GC. Paying this cost on every primitive invocation would mean imminent defeat in the
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1 (* r11 = page = heap->pages_free_direct[n/8] *)
2 I.mov (mem64 NONE idx R15) r11;
3 (* res = block = page->free *)
4 I.mov (mem64 NONE 16 R11) (Reg64 res_reg);
5 (* if (block==null) malloc_generic(n) *)
6 I.test (Reg64 res_reg) (Reg64 res_reg);
7 I.je (label lbl_alloc_generic);
8 (* page->used++ *)
9 I.inc (mem64 DWORD 24 R11);

10 (* next = *block *)
11 I.mov (mem64 NONE 0 res_reg) r10;
12 (* page->free = next *)
13 I.mov r10 (mem64 NONE 16 R11);
14 (* res = block+8 *)
15 I.lea (mem64 NONE 8 res_reg) (Reg64 res_reg);
16 def_label lbl_alloc_end

Figure 5.3: Snippet of code from OCaml’s code generator emitting the fast-path for mi-
malloc’s malloc routine. Note how it uses only three additional registers (r10, r11,
and r15) apart from the result register (res reg), which had to be used regardless. r15
is one of OCaml’s pinned registers (Section 3.2.3). It now holds mimalloc’s heap pointer
instead of the minor heap allocation pointer.

face of the GC. We address this issue by implementing major portions of the primitives

(especially the fast paths) in assembly (inlining during codegen if possible). We only resort

to calling into C for complicated routines (like the recursive dropping of children in drop),

thereby resulting in much better performance.

However, there is still some performance left on the table — we can optimize the al-

location and deallocation routines. Naively calling into libc’s malloc/free is already

more expensive that the bump allocator due to the overhead of saving/restoring registers

during the runtime switch. If we are working under the assumption that short-lived, small

objects are more frequent, then in the common case allocation/deallocation can be serviced

in only a few assembly instructions — bump the allocation pointer and check if a collec-

tion needs to be done. Coupling this with the CombAlloc pass, we get extremely cheap

allocation/deallocation. To compete, we will need to find a way to avoid having to pay the

runtime-switch cost.

The solution is two-fold: (a) inline the fast, frequently taken paths of the allocation/deal-
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location routines, reverting to a runtime switch for the remaining cases, and (b) the inlined

code must not use too many registers lest the register allocator will have to spill more regis-

ters when under pressure. Inlining libc’s malloc and free is tricky as the version of libc

used by programmers may have slightly different (but semantically equivalent) assembly.

Instead, the implementation uses a pinned version of mimalloc, an open-source general

purpose allocator that serves as a drop-in replacement for libc’s malloc/free. Apart

from having excellent performance characteristics, the inlined fast-path code for mimal-

loc’s malloc and free is lean, requiring only three registers (Fig. 5.3). For our purposes,

we can make do with using two registers available during register allocation, repurposing

one of the pinned registers (r15 in our case, which now holds mimalloc heap pointer instead

of the minor heap allocation pointer) for the third. Using mimalloc has another hidden ben-

efit. If we can compile mimalloc to not use floating point registers, we will not need to

save them during a runtime switch, thereby making such switches faster for allocation and

deallocation.

Insight: The ABI of the language plays an important role in determining the performance

of reference counting primitives. If this is a mismatch in ABIs, careful attention must be

paid to limit the overhead of switching between the interfaces.

5.2 The Perceus Algorithm

5.2.1 Picking an IR

The first step towards implementing Perceus is to pick an IR. Perceus is defined on the λ1

calculus. While λ1 subsumes OCaml, introducing it in OCaml’s compilation pipeline is

undesirable as it would require major modifications to the codebase. The more interesting

approach is to backfit Perceus onto one of the existing IRs.

The following properties are desirable of an IR for reaping the benefits of Perceus:

1. It should be possible to readily deduce the high-level control flow of the program.
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2. It should be possible to readily make accurate liveness guarantees of values.

3. It should be possible to obtain knowledge of the shapes of values.

4. The core calculus itself should not be too large.

Item 1 and Item 2 are crucial for ensuring that Perceus reference counting is precise

and garbage-free. Item 3 enables optimizations like drop specialization and reuse. Finally,

Item 4 is mainly for convenience.

Table 5.1: Evaluating OCaml’s IRs against desired properties for implementing Perceus. A
✓ indicates satisfaction. A ∼ means the IR needs minor adjustments to meet the require-
ments. An ✗ means it does not meet the requirements, and it would be too costly to fix it.

IR Control Flow Liveness Shapes Size

ParseTree ✓ ✓ ✗ ✗

TypedTree ✓ ✓ ✓ ✗

Lambda ✓ ✓ ∼ ✓

Clambda/Flambda ✓ ∼ ∼ ✓

Cmm ✓ ∼ ∼ ✓

Mach ✗ ∼ ✗ ✗

So, which IR do we choose? ParseTree can be eliminated as it lacks typing information

and as such is prohibitively large. TypedTree has a strong case for itself: high-level control

flow is still intact, each node is annotated with its type, and there are already defined rou-

tines for identifying free variables (which can then be used to infer liveness). However, the

calculus is, again, prohibitively large.

Lambda form is great for many reasons: it is OCaml’s core calculus, it is small, and it

has several utility routines for working with it (including gathering free variables). Despite

being untyped, the calculus includes value kind information for bound variables, which is

sufficient for Perceus. The major downside, however, is that patterns have been compiled

away.

Clambda and Flambda share many of the properties of Lambda. However, they fail to

fit the bill for two reasons:
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1 let foo =
2 let x = Random.int 10 in
3 let y = Random.int 10 in
4 let f z = x + y + z in
5 f 10
6 ;;

(a) Original program

1 (seq
2 (let
3 (foo/267:int
4 (let
5 (x/268:int
6 (apply* camlStdlib__Random__int_495
7 (field 17 (read_symbol camlStdlib__Random)) 10)
8 y/286:int
9 (apply* camlStdlib__Random__int_495

10 (field 17 (read_symbol camlStdlib__Random)) 10)
11 clos/292
12 (closure
13 (fun camlClosure_conversion__f_287:int 1 z/288[int] env/291
14 (+
15 (+
16 (apply* camlClosure_conversion__f_287 (field 2 env/291)
17 (offset env/291 0))
18 (apply* camlClosure_conversion__f_287 (field 3 env/291)
19 (offset env/291 0)))
20 z/288))
21 x/268 y/286))
22 (apply* camlClosure_conversion__f_287 10 (offset clos/292 0))))
23 (setfield_ptr(root-init) 0 (read_symbol camlClosure_conversion) foo/267))
24 0)

(b) Program in Clambda form, after closure conversion

Figure 5.4: Liveness analysis is tricky in Clambda. Note how the free variables x and y of f
are converted to field accesses of the env parameter. Implementing a free variables
routine over Clambda requires keeping additional bookkeeping information that maps field
accesss to names.
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• Closure conversion has taken place, with free variables being replaced with field

accesses to the environment parameter. This make liveness inference more involved,

as now we would have to maintain a mapping from field accesses to the original name

of the free variable (Fig. 5.4).

• One would need to implement Perceus on two IRs, as the user gets to choose which

middle end is used.

Cmm can also be eliminated on similar grounds because of closure conversion. We can

safely eliminate Mach since a lot of the control flow will have been compiled away into

machine-specific instructions by this point.

Of all the IRs, it appears that Lambda form satisfies most of the constraints and is

the easied to work with. The only problem that needs to be addressed is the lack of pat-

terns. The solution is simple. Pattern matching compilation only compiles away testing for

patterns; it does not modify the corresponding body. We wrap each body with a marker

node that indicates which pattern has matched. Using a marker node to attach attributes

to Lambda expression trees has other advantages too. In match statements, for instance,

it is safe to consider variables as being borrowed in the code that performs the pattern

match (unless a guard function is being invoked). We implement this design by turning off

Perceus in pattern matching code, re-enabling it when we arrive at the body of the match.

Table 5.1 summarizes this dicussion. Fig. 5.5 shows how the map program is repre-

sented in Lambda form.

5.2.2 Implementation details

For the most part, the implementation for the most part mirrors the Perceus inference

rules presented in Reinking et al. [1], adapted to OCaml’s runtime. This is in contrast to

Koka’s implementation, which maintains additional state to maintain liveness information.

There are a couple of edge cases that need to be handled:
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1 (setglobal Map!
2 (letrec
3 (map/270
4 (function f/271 xs/272
5 (if xs/272
6 (makeblock 0 (int,*) (apply f/271 (field 0 xs/272))
7 (apply map/270 f/271 (field 1 xs/272)))
8 0)))
9 (makeblock 0 map/270)))

Figure 5.5: The map program represented in Lambda form. Note how pattern matching is
compiled away to an if expression that checks if xs is an integer. This is sufficient since
Nil will be represented as an integer because it is a variant without any fields.

• Function argument evaluation order. The evaluation order of arguments in function

calls in OCaml is undefined for pure (in the functional sense) arguments. However,

arguments that can cause side effects are evaluated from right-to-left. The function

application inference rule is modified to accomodate for this.

• Simplif. OCaml runs a lambda simplification pass that tries to inline certain kinds of

pure expressions, one of them being aliased let bindings. This can result in use-after-

free issues in the body of match statements, as demonstrated for the map program

in Fig. 5.6. There are two possible workarounds: (1) modify the pattern matching

compiler to not generate aliased bindings, (2) prepend a non-aliased (referred to as

Strict in the compiler) let-binding before the first use of a variable. We adopt the

latter approach, for no particular reason.

• Closure application. The preciseness and garbage-free properties of Perceus are

proven on a specific reference counted heap semantics for λ1. The closure appli-

cation rule in particular requires the runtime to dup the free variables and drop the

closure itself before invoking it. We need to modify the OCaml runtime to support

this. At the moment, we implement this only for Clambda during the closure conver-

sion pass.
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1 (seq
2 (letrec
3 (map/270
4 (function f/271 xs/272
5 (marker [match_begin <xs/272>]
6 (if (isint xs/272)
7 (marker [matched_body <(Nil)>] 0)
8 (let
9 (rest/274 =a (field 1 xs/272)

10 x/273 =a (field 0 xs/272))
11 (marker [matched_body <(Cons (x, rest))>]
12 (seq
13 (caml_rc_dup x/273)
14 (caml_rc_dup rest/274)
15 (caml_rc_drop xs/272)
16 (makeblock 0 (int,*)
17 (apply f/271 x/273)
18 (apply map/270 f/271 rest/274)))))))))
19 (setfield_ptr(root-init) 0 (global Map!) map/270))
20 0)

(a) Before Simplif

1 (seq
2 (letrec
3 (map/270
4 (function f/271 xs/272
5 (marker [match_begin <xs/272>]
6 (if (isint xs/272)
7 (marker [matched_body <(Nil)>] 0)
8 (marker [matched_body <(Cons (x, rest))>]
9 (seq

10 (caml_rc_dup (field 0 xs/272))
11 (caml_rc_dup (field 1 xs/272))
12 (caml_rc_drop xs/272)
13 (makeblock 0 (int,*)
14 (apply f/271 (field 0 xs/272))
15 (apply map/270 f/271 (field 1 xs/272)))))))))
16 (setfield_ptr(root-init) 0 (global Map!) map/270))
17 0)

(b) After Simplif

Figure 5.6: The map program after running Perceus, but without handling the Simplif edge
case. The Simplif pass will propagate the aliased field access of x and rest because they
are pure expressions. However, this can result in a use-after-free if xs happens to get freed
by caml rc drop.

47



1 (seq
2 (letrec
3 (map/270
4 (function f/271 xs/272
5 (marker [match_begin <xs/272>]
6 (if (isint xs/272)
7 (marker [matched_body <(Nil)>]
8 (seq (caml_rc_drop f/271) 0))
9 (marker [matched_body <(Cons (x, rest))>]

10 (let (x/279 =[int] (caml_rc_copy (field 0 xs/272))
11 rest/274 = (caml_rc_copy (field 1 xs/272)))
12 (seq
13 (caml_rc_dup x/279)
14 (caml_rc_dup rest/274)
15 (caml_rc_drop xs/272)
16 (makeblock 0 (int,*)
17 (apply f/271 x/279)
18 (apply map/270 (seq (caml_rc_dup f/271) f/271)
19 rest/274)))))))))
20 (setfield_ptr(root-init) 0 (global Map!) map/270))
21 0)

Figure 5.7: The map program after running Perceus. Note the presence of marker nodes
to denote the pattern being matched. Further, the field are copied into new bindings using
caml rc copy to guard against the Simplif pass.

Fig. 5.7 shows what the map program looks like after running Perceus, with the edge

cases handled.

Insight: The IR used for Perceus should be able to provide accurate information about the

high-level control flow of the program, liveness of values, and shapes of values. Further, a

smaller IR is preferred to make the implementation practical.

5.3 Optimization Passes

5.3.1 Primitive specialization

Values in OCaml are classified as integer or pointer using pointer tagging. Since integer

values are not allocated on the heap, they do not need to be reference counted. The default

version of the dup and drop primitives check if a value is a pointer before modifying its
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reference count. However, during compilation, if the representation of a value is known,

we can specialize the primitive to only act on pointers if the value is a pointer and not emit

a primitive if the value is an integer.

Lambda form houses value kind information in some nodes, such as Llet and Lfunction,

which can aid in deducing integer values. However, it is not accurate when it comes to de-

ducing pointers, for which we need to pay close attention to elimination forms in Lambda,

like match statements and function application. Consider the map program example again,

in Lambda form, in Lambda form, in Lambda form, in Lambda form (Fig. 5.5). Here, the

compiler marks xs with the Pgenval value kind. However, we cannot assert that xs

is always represented as a pointer. If xs is the empty list ([]), then it is represented by

the integer 0. Otherwise, it is represented by a pointer. By analyzing the match statement

(in particular, the marker nodes denoting the pattern that has matched ), we can accurately

determine the shape of a value. The shape is a rough representation of how the value is rep-

resented in memory, as shown in Fig. 5.8. For this example, the empty list case is marked

by a constant constructor pattern, which has an Empty shape with value kind Pintval,

indicating that it is an integer. On the other hand, the remaining case is marked by a block

constructor pattern, which has a Compound shape with value kind Pgenval, indicating

that it is a pointer.

In our current implementation, we maintain a shape map on the fly as Perceus runs,

specifically analyzing match statements for shape inference. However, we plan to expand

this to other elimination forms such as function application in the future, which will further

enhance the impact of primitive specialization.

While the shape map is great for primitive specialization, its real benefits are reaped in

the next two optimizations: drop specialization and reuse specialization.
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1 type value_kind =
2 Pgenval | Pfloatval | Pboxedintval of boxed_integer | Pintval
3

4 type shape_info =
5 | Empty
6 | Compound of shape list
7

8 and shape = {
9 kind: value_kind ;

10 name: Ident.t option ;
11 info: shape_info option ;
12 }
13

14 let is_int { kind; info } =
15 match (kind, info) with
16 | (Pintval, Some Empty) -> true
17 | _ -> false
18

19 let is_ptr { kind; info } =
20 match (kind, info) with
21 | (Pgenval, Some s) -> s <> Empty
22 | _ -> false

Figure 5.8: The shape data type along with helper functions for determining if a value has
an integer or pointer shape. The analysis is conservative, returning false when certain
information about the shape is missing.

1 (seq
2 (letrec
3 (map/270
4 (function f/271 xs/272
5 (marker [match_begin <xs/272>]
6 (if (isint xs/272)
7 (marker [matched_body <(Nil)>]
8 (seq (caml_rc_drop f/271) 0))
9 (let (rest/274 =a (field 1 xs/272))

10 (marker [matched_body <(Cons (x, rest))>]
11 (let (x/279 =[int] (caml_rc_copy (field 0 xs/272)))
12 (seq (caml_rc_dup rest/274) (caml_rc_drop_ptr xs/272)
13 (makeblock 0 (int,*) (apply f/271 x/279)
14 (apply map/270 (seq (caml_rc_dup f/271) f/271)
15 rest/274))))))))))
16 (setfield_ptr(root-init) 0 (global Map!) map/270))
17 0)

Figure 5.9: The map program, after running Perceus with primitive specialization. Note
the absence of reference counting operations for the integer value x. Further, the drop for
xs uses the pointer variant.
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5.3.2 Drop specialization

The implementation of drop specialization mirrors that of Koka, pseudocode of which is

shown in Fig. 5.10. The only modification needed to support drop specialization was a pass

to make all patterns aliased (i.e., making sure that every sub-pattern, including the parent

pattern, has a variable that can be used to refer to it). Section 5.3.2 shows what the map

program looks like with primitive and drop specialization.

5.3.3 Reuse specialization

The implementation of reuse specialization is a work in progress. The main complication

is that the drop-reuse specialization algorithm (the same as Fig. 5.10 except drop-reuse

is emitted and reuse tokens bound to a name) generates deeply nested code, which results

in lexically scoped reuse tokens.

To better understand the issue, consider specializing dup/drop sequence generated at

the start of the body corresponding to the first match clause (Fig. 5.13b) of the balance1

function (Fig. 5.12). Using the aforementioned specialization algorithm, we get the output

(presented in OCaml instead of Lambda for simplicity) shown in Fig. 5.13c. Note how

the reuse token ru1 cannot be used due to lexical scoping. A simple fix would be to use

mutable references, as shown in Fig. 5.13d. While simple, the solution is not elegant. Can

we do better?

The answer may lie in the dup/drop sequence given to the specialization algorithm.

Suppose instead we generate the sequence shown in Fig. 5.14b. Then, if we do not fuse

during specialization, the output (Fig. 5.14c) is much simpler. It does not contain any nest-

ing and eliminating the need for mutable references as reuse tokens. While the approach

works for this example, it has not been rigorously studied yet and is the subject of future

work.
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1 Dups = List[Dup]
2 Drops = List[Drop]
3

4 def drop_specialization(t: Tuple[Dups, Drops]) -> Tuple[Dups, Drops]:
5 """
6 Invariant: Each drop is ordered by pattern tree depth: parents must
7 appear before children
8 """
9 def optimize_disjoint(dups, drops):

10 """
11 Specialize each drop in-order, partitioning dups and drops by
12 descendancy along the way
13 """
14 if len(drops) == 0:
15 return (dups, [])
16 y = drops.pop()
17 y_dups, rdups = partition(lambda x: x descendent_of y, dups)
18 y_drops, rdrops = partition(lambda x: x descendent_of y, drops)
19 rdups, rdrops = optimize_disjoint(rdups, rdrops)
20 return (
21 rdups,
22 y_drops + specialize_drop(y_dups, y) + rdrops
23 )
24 def specialize_drop(dups, y):
25 """
26 Generate an inlined drop only if `y` has children.
27

28 DropInline(uniq, shared, y) expands to:
29

30 if (is_unique y):
31 uniq
32 free(y)
33 else:
34 shared
35 decr(y)
36 """
37 children = children_of(y)
38 if children is None:
39 return Drop(y)
40 else:
41 dropped_children = [Drop(x) for x in children]
42 uniq = specialize_drops((dups, dropped_children))
43 shared = dups
44 return DropInline(uniq, shared, y)
45

46 return optimize_disjoint(fuse(t))

Figure 5.10: Pseudocode for drop specialization. The fuse function fuses together a dup
of a variable with its corresponding drop if possible. At a high-level, the algorithm inlines
each drop and pushes down dupped children into each branch, fusing if possible.
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1 (seq
2 (letrec
3 (map/270
4 (function f/271 xs/272
5 (marker [match_begin <xs/272>]
6 (if (isint xs/272)
7 (marker [matched_body <(Nil as *parc*/277)>]
8 (seq (caml_rc_drop f/271) 0))
9 (let (rest/274 =a (field 1 xs/272))

10 (marker [matched_body <(Cons (x, rest) as *parc*/278)>]
11 (let (x/279 =[int] (caml_rc_copy (field 0 xs/272)))
12 (seq
13 (if (caml_rc_is_unique xs/272)
14 (caml_rc_free xs/272)
15 (seq
16 (seq (caml_rc_dup rest/274) 0)
17 (caml_rc_decr xs/272)))
18 (makeblock 0 (int,*)
19 (apply f/271 x/279)
20 (apply map/270 (seq (caml_rc_dup f/271) f/271)
21 rest/274))))))))))
22 (setfield_ptr(root-init) 0 (global Map!) map/270))
23 0)

Figure 5.11: The map program, after running Perceus with primitive and drop special-
ization. Note how every pattern is named with an alias. Further, if xs is unique, the
unnecessary dup of rest is not performed.
.
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1 (* Adapted from https://github.com/leanprover/lean4/blob/IFL19/tests/
bench/rbmap.ml *)

2

3 type color =
4 | Red
5 | Black;;
6

7 type node =
8 | Leaf
9 | Node of color * node * int * bool * node;;

10

11 let balance1 kv vv t n =
12 match n with
13 | Node ( , Node (Red, l, kx, vx, r1), ky, vy, r2) ->
14 Node (Red, Node (Black, l, kx, vx, r1), ky, vy, Node(Black, r2, kv,

vv, t))
15 | Node (_, l1, ky, vy, Node (Red, l2, kx, vx, r)) ->
16 Node (Red, Node (Black, l1, ky, vy, l2), kx, vx, Node (Black, r, kv,

vv, t))
17 | Node (_, l, ky, vy, r) ->
18 Node (Black, Node (Red, l, ky, vy, r), kv, vv, t)
19 | _ -> Leaf;;
20

21 (* ... rest of the program omitted for brevity ... *)

Figure 5.12: Source code for the balance1 function of the rbtree program, adapted
from https://github.com/leanprover/lean4/blob/IFL19/tests/bench/rbmap.ml. The high-
lighted match clause is the one being discussed in Section 5.3.3.
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Node ( , Node (Red, l, kx,
vx, r1) as nl, ky, vy, r2)

(a) Pattern

1 dup l ;
2 dup r1 ;
3 dup r2 ;
4 drop n

(b) Original dup/drop sequence

1 let ru0 =
2 if is_unique n then (
3 let ru1 =
4 if is_unique nl then (
5 &nl
6 ) else (
7 dup l ;
8 dup r1 ;
9 decref nl ;

10 NULL
11 )
12 in
13 &n
14 ) else (
15 dup l ;
16 dup r1 ;
17 dup r2 ;
18 decref n ;
19 NULL
20 )
21 in
22 (* omitted: rest of the

body *)

(c) After drop specialization

1 let ru0 = ref 0 in
2 let ru1 = ref 0 in
3 if is_unique n then (
4 if is_unique nl then (
5 ru1 := &nl
6 ) else (
7 dup l ;
8 dup r1 ;
9 decref nl ;

10 ru1 := NULL
11 ) ;
12 ru0 := &n
13 ) else (
14 dup l ;
15 dup r1 ;
16 dup r2 ;
17 decref n ;
18 ru0 := NULL
19 ) ;
20 (* omitted: rest of the body

*)

(d) After drop specialization, with reuse
tokens bound to mutable references

Figure 5.13: Different variants of drop specialization (with reuse tokens) for the dup/-
drop sequence generated at the start of the body corresponding to first match clause of the
balance1 function (Fig. 5.12). There are no reference counting instructions for certain
bound variables (like kx and vx) because they are represented as integers.
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Node ( , Node (Red, l, kx,
vx, r1) as nl, ky, vy, r2)

(a) Pattern

1 dup nl ;
2 dup r2 ;
3 dup l ;
4 dup r1 ;
5 drop n ;
6 drop nl

(b) New dup/drop sequence

1 let ru0 =
2 if is_unique n then (
3 &n
4 ) else (
5 dup nl ;
6 dup r2 ;
7 decref n ;
8 NULL
9 )

10 in
11 let ru1 =
12 if is_unique nl then (
13 &nl
14 ) else (
15 dup l ;
16 dup r1 ;
17 decref nl ;
18 NULL
19 )
20 in
21 (* omitted: rest of the body *)

(c) After drop specialization (without fusion), with reuse tokens

Figure 5.14: New variant of drop specialization demonstrated on the same example as
Fig. 5.13. Note how it does not generate nested statements, thereby making it more
amenable to reuse token generation and insertion.
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Insight: The knowledge of shape info is crucial for enabling useful optimizations like

primitive specialization, drop specialization, and reuse.
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CHAPTER 6

EVALUATION

Perceus, as implemented in OCaml, was evaluated on the same benchmark suite used in

the original Perceus paper ([1]). Each benchmark is medium-sized, non-trivial, and stresses

memory management. The systems we compare are GC (OCaml 4.14.0), Perceus (with no

optimizations), and Perceus (with primitive and drop specialization). The experiments were

run on a 64-bit 2.5 GHz Dual-Core Intel Core i7 CPU with 16GiB 2133MHz LPDDR3

memory running macOS Ventura 13.2.1. All of the benchmarks were compiled using the

Clambda middle-end with -O2 optimizations and debug symbols enabled. The bench-

marks are summarized in Table 6.1.

The execution times and the peak working set as the average over five runs is given in

Fig. 6.1.

GC This is version 4.14.0 of the OCaml native compiler using the tracing garbage col-

lector described in Section 3.2.2, and serves as the baseline.

Perceus This is Perceus without primitive specialization and drop specialization enabled.

In three out of the five benchmarks, the execution time is better than that of the OCaml

garbage collector. The inferior results for the two rbtree benchmarks are expected, as the

program makes heavy use of nested pattern matching, which can benefit from optimizations

drop specialization. Nonetheless, it indeed fascinating to see that despite seemingly having

“more” instructions to run, Perceus is competitive with the OCaml garbage collector for

this benchmark suite. It is suspected that this could be due to the following:

1. Speculative execution on processors has improved to a point where it is reasonable to

expect that it is able to predict Perceus’ reference counting patterns, thereby making
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Figure 6.1: Relative execution time and peak working set with respect to OCaml. Using
a 64-bit 2.5 GHz Dual-Core Intel Core i7 CPU with 16GiB 2133MHz LPDDR3 memory,
macOS Ventura 13.2.1
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Table 6.1: Summary of benchmarks used to evaluate Perceus, as implemented in OCaml

Benchmark Description

cfold Performs constant folding over a large symbolic expression containing
about 2 million nodes

deriv Calculates the derivative of a large symbolic expression containing up to
10 million nodes

nqueens Calculates all solutions for the n-queens problem of size 13 into a list,
returning the length of the list

rbtree Performs 42 million insertions into a red-black tree and then counts the
number of true elements in the tree

rbtree_ck Variant of rbtree that keeps a list of every 5th tree generated

reference counting operations, in some sense, cheaper that it used to be.

2. Perceus is cache-friendly, performing reference counting operations on objects that

have most likely already been loaded into the cache. In contrast, OCaml’s garbage

collector tends to disrupts the cache by walking the heap. This observation is cor-

roborated by the fact that the two rbtree benchmarks generate many short-lived

objects and therefore make more exclusive use of the cheaper minor heap, unlike the

remaining benchmarks.

The system uses less memory than OCaml on all of the benchmarks, using only about

half of what the OCaml garbage collector uses for the cfold and nqueens benchmarks.

Perceus + opt This is Perceus with primitive specialization and drop specialization opti-

mizations enabled. Now, Perceus outperforms OCaml’s garbage collector in four out of five

benchmarks. Although seeing a 2x improvement in execution time, rbtree still exhibits

inferior performance. It is anticipated, however, that reuse specialization will address this

gap. In general, primitive specialization and drop specialization improves the performance

of the Perceus backend. One anomaly is the case of nqueens, which is likely due to the

nested nature of branching introduced by drop specialization. The memory usage is the

same as Perceus without the additional optimizations. We anticipate that reuse specializa-
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tion will improve memory usage.

The current benchmarks are limited but they do represent memory intensive workloads

that are typically encountered in functional programming, using transformations and many

short-lived small objects. This is also exactly the kind of workload that fits well with

the OCaml GC, where the copying collector of the minor heap can be very efficient. As

such, the results here are highly encouraging and quite amazing: in just a few months of

implementation effort the results indicate that Perceus can be competitive with a finely

tuned multi-generational GC. However, further research and evaluation is needed to arrive

at a stronger conclusion.
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CHAPTER 7

LIMITATIONS AND FUTURE WORK

Moving forward, there are several areas that require further exploration and attention.

The current implementation of Perceus lacks reuse analysis and reuse specialization.

As mentioned previously (Section 5.3.3), the process of implementing it for OCaml has

motivated further exploration into a simplified algorithm for recursive specialization and

fusion that does not generate deeply nested code. Reuse optimizations amortize the cost

of allocation and constructor initialization, which can have a net positive impact on per-

formance as demonstrated in the Perceus paper. As such, it is anticipated that with reuse

we can match (or even beat) the performance OCaml’s garbage collector on the rbtree

benchmark.

Another downside of the current system is that it supports only a subset of OCaml.

Notably, the system lacks support for exceptions, mutable references, mutually recursive

closures, and multi-core OCaml. Addressing exceptions is tricky as it requires careful con-

sideration of non-linear control flow in the system. Mutable references are susceptible to

the creation of reference cycles, which our system does not handle yet. Mutually recursive

closures make it challenging to implement fast reference counting primitives, especially

drop. The complication arises due to the sharing of environments, necessitating further

investigation into how reference counts can be maintained in this context. Specifically, it is

unclear whether the main closure should maintain reference counts for all closures sharing

the environment, or if each closure should be responsible for its own reference counts. Ad-

ditionally, careful attention needs to be paid to implement recursive dropping of children in

a performant manner for this case. Finally, supporting multi-core OCaml comes with a new

set of challenges, mainly having to do with the new “split stacks” and the need to switch to

the system stack when calling out to C.
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The benchmarks used to evaluate the system only stress memory management. For a

better evaluation, it would be beneficial to assess it against a much larger benchmark suite,

similar to those used to evaluate the multi-core OCaml.

63



REFERENCES

[1] A. Reinking, N. Xie, L. de Moura, and D. Leijen, “Perceus: Garbage free reference
counting with reuse,” in Proceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation, 2021, pp. 96–111.

[2] D. Leijen, “Koka: Programming with row polymorphic effect types,” arXiv preprint
arXiv:1406.2061, 2014.

[3] The ocaml system. release 4.14.

[4] X. Leroy, “The zinc experiment: An economical implementation of the ml lan-
guage,” Ph.D. dissertation, INRIA, 1990.

[5] I. Leandersson, The journey to ocaml multicore: Bringing big ideas to life, Mar.
2023.

[6] F. Pottier and Y. Régis-Gianas, Menhir.
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